地幔是地球上体积占比最大的圈层,记录了地球的形成、分异和演化过程的重要信息。前人通过对大洋玄武岩(包括大洋中脊玄武岩MORB和洋岛玄武岩OIB)的研究提出存在不同的地幔储库,包括亏损地幔(DMM),富集I型地幔(EM-I)、富集II型地幔(EM-II)、高238U/204Pb地幔(HIMU)等(Zindler and Hart, 1986; Hofmann, 1997)。在Sr-Nd-Hf同位素相关图上,这些不同的地幔储库都汇聚到相同的区域,该区域被定义为PREMA(Prevalent Mantle)或FOZO(Focus Zone)地幔。相对于MORB,OIB的同位素变化范围非常大,通常认为它们来自于下地幔,其形成与起源与核幔边界的地幔柱活动相关。前人研究发现,OIB的He同位素组成具有较大的变化范围,部分样品具有特别高的3He/4He比值(Kurz et al., 1982)。由于3He来自地球形成时的残留,而4He为放射性衰变的产物,因此高3He/4He的 OIB被认为来自于地球形成后未经历去气作用的原始地幔(primordial mantle)。考虑到大部分地幔柱可能起源于核幔边界的剪切波低速区(LLSVPs:large low shear-wave velocity provinces),因此未去气的原生地幔被认为储存在LLSVPs。已有研究表明,高3He/4He值也是地幔储库PREMA(Prevalent Mantle)的主要特征,然而Sr-Nd-Pb同位素却显示PREMA地幔亏损不相容元素,表明它也长期遭受了部分熔融。这就造成部分OIB具有原生的He同位素和亏损Sr-Nd-Hf同位素之间的悖论。目前普遍的观点认为,PREMA代表在地球形成后不久就遭受熔体抽取后的地幔残留体,之后一直被保存在核幔边界,未受地幔对流的影响,因此未经历显著的去气作用。鉴于OIB的形成时代普遍年轻(<200Ma),它很难用来验证PREMA地幔是否长期存在于地球的核幔边界。金伯利岩是目前已知来源最深的岩浆产物,可能起源于核幔边界LLVSPs。它由于富含挥发份(Giulianiand Pearson, 2019),上升速度非常快,较少经历岩浆房过程,受陆壳混染的影响较小,从而可以很好地反映其深部地幔源区的成分。此外,喷发在大陆上的金伯利岩比OIB更容易保存下来,目前全球最老的金伯利岩的年龄为20.6亿年。部分金伯利岩具有与OIB相似的高3He/4He比值特征,前人统计发现金伯利岩的Nd-Hf同位素组成类似于球粒陨石,来源于相对原始的地幔源区(Woodhead et al., 2019)。因此,金伯利岩是验证PREMA地幔储库与LLSVPs之间是否存在关联的重要载体。为了利用金伯利岩揭示PREMA地幔与核幔边界LLSVPs之间的关联,瑞士苏黎世联邦理工学院(ETH)的Andrea Giuliani博士等收集汇总了全球金伯利岩和与其具有类似成因的超镁铁质煌斑岩的87Rb-87Sr(半衰期490亿年)、147Sm-143Nd(1060亿年)、176Lu-176Hf(370亿年)放射性同位素数据。在排除地壳混染等潜在的影响,作者选择具有亏损同位素组成的样品进行了详细分析。这些样品具有均一、弱亏损的Sr-Nd-Hf同位素,根据时间演化推测其现今源区的Sr-Nd-Hf同位素特征与通过OIB定义的PREMA或者FOZO较为一致(图1),并且与其就位时代具有良好的线性关系(图2)。考虑到地球演化的历史中,发生俯冲物质以及俯冲区域的变质压力和温度都曾发生大幅度的变化,其形成的富集地幔无法与亏损地幔持续混合形成PREMA组分,因此可以排除PREMA混合成因的可能性,其很可能来自地球早期分异的残留。
图1 MORB和OIB的Sr-Nd-Hf同位素组成、根据OIB成分划分的PREMA和FOZO区域以及亏损的金伯利岩源区,其中PREMA组成的椭圆代表2倍误差(2σ)(Giuliani et al., 2021)
具有亏损组成的金伯利岩的Nd-Hf同位素沿线性演化线分布的原因是它们来源于均一的地幔源区,根据线性演化关系反演得到的地球形成时的PREMA初始143Nd/144Nd(0.50657±10;1σ)和176Hf/177Hf(0.27983±12;1σ)比值与球粒陨石值在误差范围内一致。然而,由金伯利岩计算得到的PREMA的147Sm/144Nd和176Lu/177Hf比值须高于球粒陨石,才能够随时间演化为现今的亏损PREMA端元。因此,金伯利岩并非来源于球粒陨石质原始地幔源区(如Woodhead et al., 2019的结论),而是来自于地球在形成初期经历硅酸盐熔体的抽取后残留的亏损地幔端元(Early depleted reservoir; EDR),但该早期亏损事件发生于146Sm完全衰变完以后,因此金伯利岩和OIB中不存在高142Nd/144Nd的异常。
图2 不同时代的金伯利岩和超镁铁质煌斑岩的初始Sr、Nd、Hf同位素组成(A-C),以及近700Ma以来的组成(D-F)。深蓝色的线代表亏损的金伯利岩源区的演化趋势(其中圆形是金伯利岩,十字为超镁铁质的煌斑岩,浅蓝色区域代表2倍误差)。源区组成的估计排除了含有较富集成分(菱形)过渡成分(三角形)的金伯利岩(Giuliani et al., 2021)
主要参考文献Giuliani A, Jackson M G, Fitzpayne A, et al.Remnants of early Earth differentiation in the deepest mantle-derived lavas[J].Proceedings of the National Academy ofSciences, 2021, 118(1): e2015211118.Giuliani A, Pearson D G. Kimberlites: From deep earthto diamond mines[J]. Elements, 2019, 15:377-380.Hofmann A W. Mantle geochemistry: The message fromoceanic volcanism[J]. Nature, 1997,385(6613): 219-229.Kurz M D, JenkinsW J, Hart S R. Helium isotopic systematics of oceanic islands and mantleheterogeneity[J]. Nature, 1982, 297:43-47.Woodhead J, Hergt J, Giuliani A, et al. Kimberlitesreveal 2.5-billion-year evolution of a deep, isolated mantle reservoir[J]. Nature, 2019, 573 (7775) : 578-581.Zindler A, Hart S. Chemical geodynamics[J]. Annual Reviews of Earth and PlanetarySciences, 1986, 14: 493-571.
发表评论